Перевод: с английского на все языки

со всех языков на английский

extensive testing

  • 1 extensive testing

    поскольку проведение исчерпывающего тестирования обычно невозможно, то данный термин подразумевает проведение максимально полного тестирования.

    Determining whether a set of requirements has been successfully implemented necessitates extensive testing. — Чтобы определить, успешно ли реализован весь набор [исходных] требований, необходимо провести всестороннее тестирование [разработанного продукта] см. тж. exhaustive testing

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > extensive testing

  • 2 extensive

    1) громадный, большой; обширный
    2) всесторонний, исчерпывающий
    см. тж. extensive testing
    о характере развития системы, когда её развитие направлено вширь, на рост объёма

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > extensive

  • 3 extensive

    (ЛДП не только экстенсивный!)
    1) исчерпывающий
    2) подробный (напр., о таблице); всеобъемлющий
    3) всесторонний ( об исследовании)
    extensive study систематическое изучение / исследование
    4) обстоятельный
    The most extensive fuel quality testing was carried out in the Central Test Laboratory Наиболее обстоятельная проверка качества топлива проводилась в Центральной испытательной лаборатории
    5) развернутый
    extensive network of air quality monitoring stations развернутая сеть станций / постов мониторинга качества воздуха
    6) (пе-рен.) богатый
    extensive[ installation] practice богатый опыт [ монтажа];
    extensive experience 1. богатый опыт 2. богатая практика (выполнения чего-л.)
    7) развитый
    an extensive network of refueling stations развитая сеть топливозаправочных станций
    8) протяженный (о трещине)
    9) (черен.) насыщенный
    Uzbekistan has the most extensive network of air quality monitoring stations Узбекистан располагает наиболее насыщенной [ среди государств среднеазиатского региона] сетью станций / постов мониторинга качества воздуха
    10) массовый

    English-Russian dictionary of scientific and technical difficulties vocabulary > extensive

  • 4 extensive network testing

    szczegółowe testowanie sieci

    English-Polish dictionary for engineers > extensive network testing

  • 5 extensive network testing

    szczegółowe testowanie sieci

    English-Polish dictionary of Electronics and Computer Science > extensive network testing

  • 6 Stephenson, Robert

    [br]
    b. 16 October 1803 Willington Quay, Northumberland, England
    d. 12 October 1859 London, England
    [br]
    English engineer who built the locomotive Rocket and constructed many important early trunk railways.
    [br]
    Robert Stephenson's father was George Stephenson, who ensured that his son was educated to obtain the theoretical knowledge he lacked himself. In 1821 Robert Stephenson assisted his father in his survey of the Stockton \& Darlington Railway and in 1822 he assisted William James in the first survey of the Liverpool \& Manchester Railway. He then went to Edinburgh University for six months, and the following year Robert Stephenson \& Co. was named after him as Managing Partner when it was formed by himself, his father and others. The firm was to build stationary engines, locomotives and railway rolling stock; in its early years it also built paper-making machinery and did general engineering.
    In 1824, however, Robert Stephenson accepted, perhaps in reaction to an excess of parental control, an invitation by a group of London speculators called the Colombian Mining Association to lead an expedition to South America to use steam power to reopen gold and silver mines. He subsequently visited North America before returning to England in 1827 to rejoin his father as an equal and again take charge of Robert Stephenson \& Co. There he set about altering the design of steam locomotives to improve both their riding and their steam-generating capacity. Lancashire Witch, completed in July 1828, was the first locomotive mounted on steel springs and had twin furnace tubes through the boiler to produce a large heating surface. Later that year Robert Stephenson \& Co. supplied the Stockton \& Darlington Railway with a wagon, mounted for the first time on springs and with outside bearings. It was to be the prototype of the standard British railway wagon. Between April and September 1829 Robert Stephenson built, not without difficulty, a multi-tubular boiler, as suggested by Henry Booth to George Stephenson, and incorporated it into the locomotive Rocket which the three men entered in the Liverpool \& Manchester Railway's Rainhill Trials in October. Rocket, was outstandingly successful and demonstrated that the long-distance steam railway was practicable.
    Robert Stephenson continued to develop the locomotive. Northumbrian, built in 1830, had for the first time, a smokebox at the front of the boiler and also the firebox built integrally with the rear of the boiler. Then in Planet, built later the same year, he adopted a layout for the working parts used earlier by steam road-coach pioneer Goldsworthy Gurney, placing the cylinders, for the first time, in a nearly horizontal position beneath the smokebox, with the connecting rods driving a cranked axle. He had evolved the definitive form for the steam locomotive.
    Also in 1830, Robert Stephenson surveyed the London \& Birmingham Railway, which was authorized by Act of Parliament in 1833. Stephenson became Engineer for construction of the 112-mile (180 km) railway, probably at that date the greatest task ever undertaken in of civil engineering. In this he was greatly assisted by G.P.Bidder, who as a child prodigy had been known as "The Calculating Boy", and the two men were to be associated in many subsequent projects. On the London \& Birmingham Railway there were long and deep cuttings to be excavated and difficult tunnels to be bored, notoriously at Kilsby. The line was opened in 1838.
    In 1837 Stephenson provided facilities for W.F. Cooke to make an experimental electrictelegraph installation at London Euston. The directors of the London \& Birmingham Railway company, however, did not accept his recommendation that they should adopt the electric telegraph and it was left to I.K. Brunel to instigate the first permanent installation, alongside the Great Western Railway. After Cooke formed the Electric Telegraph Company, Stephenson became a shareholder and was Chairman during 1857–8.
    Earlier, in the 1830s, Robert Stephenson assisted his father in advising on railways in Belgium and came to be increasingly in demand as a consultant. In 1840, however, he was almost ruined financially as a result of the collapse of the Stanhope \& Tyne Rail Road; in return for acting as Engineer-in-Chief he had unwisely accepted shares, with unlimited liability, instead of a fee.
    During the late 1840s Stephenson's greatest achievements were the design and construction of four great bridges, as part of railways for which he was responsible. The High Level Bridge over the Tyne at Newcastle and the Royal Border Bridge over the Tweed at Berwick were the links needed to complete the East Coast Route from London to Scotland. For the Chester \& Holyhead Railway to cross the Menai Strait, a bridge with spans as long-as 460 ft (140 m) was needed: Stephenson designed them as wrought-iron tubes of rectangular cross-section, through which the trains would pass, and eventually joined the spans together into a tube 1,511 ft (460 m) long from shore to shore. Extensive testing was done beforehand by shipbuilder William Fairbairn to prove the method, and as a preliminary it was first used for a 400 ft (122 m) span bridge at Conway.
    In 1847 Robert Stephenson was elected MP for Whitby, a position he held until his death, and he was one of the exhibition commissioners for the Great Exhibition of 1851. In the early 1850s he was Engineer-in-Chief for the Norwegian Trunk Railway, the first railway in Norway, and he also built the Alexandria \& Cairo Railway, the first railway in Africa. This included two tubular bridges with the railway running on top of the tubes. The railway was extended to Suez in 1858 and for several years provided a link in the route from Britain to India, until superseded by the Suez Canal, which Stephenson had opposed in Parliament. The greatest of all his tubular bridges was the Victoria Bridge across the River St Lawrence at Montreal: after inspecting the site in 1852 he was appointed Engineer-in-Chief for the bridge, which was 1 1/2 miles (2 km) long and was designed in his London offices. Sadly he, like Brunel, died young from self-imposed overwork, before the bridge was completed in 1859.
    [br]
    Principal Honours and Distinctions
    FRS 1849. President, Institution of Mechanical Engineers 1849. President, Institution of Civil Engineers 1856. Order of St Olaf (Norway). Order of Leopold (Belgium). Like his father, Robert Stephenson refused a knighthood.
    Further Reading
    L.T.C.Rolt, 1960, George and Robert Stephenson, London: Longman (a good modern biography).
    J.C.Jeaffreson, 1864, The Life of Robert Stephenson, London: Longman (the standard nine-teenth-century biography).
    M.R.Bailey, 1979, "Robert Stephenson \& Co. 1823–1829", Transactions of the Newcomen Society 50 (provides details of the early products of that company).
    J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Stephenson, Robert

  • 7 Bakewell, Robert

    [br]
    b. 23 May 1725 Loughborough, England
    d. 1 October 1795 Loughborough, England
    [br]
    English livestock breeder who pioneered the practice of progeny testing for selecting breeding stock; he is particularly associated with the development of the Improved Leicester breed of sheep.
    [br]
    Robert Bakewell was the son of the tenant farming the 500-acre (200 hectare) Dishley Grange Farm, near Loughborough, where he was born. The family was sufficiently wealthy to allow Robert to travel, which he began to do at an early age, exploring the farming methods of the West Country, Norfolk, Ireland and Holland. On taking over the farm he continued the development of the irrigation scheme begun by his father. Arthur Young visited the farm during his tour of east England in 1771. At that time it consisted of 440 acres (178 hectares), 110 acres (45 hectares) of which were arable, and carried a stock of 60 horses, 400 sheep and 150 other assorted beasts. Of the arable land, 30 acres (12 hectares) were under root crops, mainly turnips.
    Bakewell was not the first to pioneer selective breeding, but he was the first successfully to apply selection to both the efficiency with which an animal utilized its food, and its physical appearance. He always had a clear idea of the animal he wanted, travelled extensively to collect a range of animals possessing the characteristics he sought, and then bred from these towards his goal. He was aware of the dangers of inbreeding, but would often use it to gain the qualities he wanted. His early experiments were with Longhorn cattle, which he developed as a meat rather than a draught animal, but his most famous achievement was the development of the Improved Leicester breed of sheep. He set out to produce an animal that would put on the most meat in the least time and with the least feeding. As his base he chose the Old Leicester, but there is still doubt as to which other breeds he may have introduced to produce the desired results. The Improved Leicester was smaller than its ancestor, with poorer wool quality but with greatly improved meat-production capacity.
    Bakewell let out his sires to other farms and was therefore able to study their development under differing conditions. However, he made stringent rules for those who hired these animals, requiring the exclusive use of his rams on the farms concerned and requiring particular dietary conditions to be met. To achieve this control he established the Dishley Society in 1783. Although his policies led to accusations of closed access to his stock, they enabled him to keep a close control of all offspring. He thereby pioneered the process now recognized as "progeny testing".
    Bakewell's fame and that of his farm spread throughout the country and overseas. He engaged in an extensive correspondence and acted as host to all of influence in British and overseas agriculture, but it would appear that he was an over-generous host, since he is known to have been in financial difficulties in about 1789. He was saved from bankruptcy by a public subscription raised to allow him to continue with his breeding experiments; this experience may well have been the reason why he was such a staunch advocate of State funding of agricultural research.
    [br]
    Further Reading
    William Houseman, 1894, biography, Journal of the Royal Agricultural Society. 1–31. H.C.Parsons, 1957, Robert Bakewell (contains a more detailed account).
    R.Trow Smith, 1957, A History of British Livestock Husbandry to 1700, London: Routledge \& Kegan Paul.
    —A History of British Livestock Husbandry 1700 to 1900 (places Bakewell within the context of overall developments).
    M.L.Ryder, 1983, Sheep and Man, Duckworth (a scientifically detailed account which deals with Bakewell within the context of its particular subject).
    AP

    Biographical history of technology > Bakewell, Robert

  • 8 Churchward, George Jackson

    [br]
    b. 31 January 1857 Stoke Gabriel, Devon, England
    d. 19 December 1933 Swindon, Wiltshire, England
    [br]
    English mechanical engineer who developed for the Great Western Railway a range of steam locomotives of the most advanced design of its time.
    [br]
    Churchward was articled to the Locomotive Superintendent of the South Devon Railway in 1873, and when the South Devon was absorbed by the Great Western Railway in 1876 he moved to the latter's Swindon works. There he rose by successive promotions to become Works Manager in 1896, and in 1897 Chief Assistant to William Dean, who was Locomotive Carriage and Wagon Superintendent, in which capacity Churchward was allowed extensive freedom of action. Churchward eventually succeeded Dean in 1902: his title changed to Chief Mechanical Engineer in 1916.
    In locomotive design, Churchward adopted the flat-topped firebox invented by A.J.Belpaire of the Belgian State Railways and added a tapered barrel to improve circulation of water between the barrel and the firebox legs. He designed valves with a longer stroke and a greater lap than usual, to achieve full opening to exhaust. Passenger-train weights had been increasing rapidly, and Churchward produced his first 4–6– 0 express locomotive in 1902. However, he was still developing the details—he had a flair for selecting good engineering practices—and to aid his development work Churchward installed at Swindon in 1904 a stationary testing plant for locomotives. This was the first of its kind in Britain and was based on the work of Professor W.F.M.Goss, who had installed the first such plant at Purdue University, USA, in 1891. For comparison with his own locomotives Churchward obtained from France three 4–4–2 compound locomotives of the type developed by A. de Glehn and G. du Bousquet. He decided against compounding, but he did perpetuate many of the details of the French locomotives, notably the divided drive between the first and second pairs of driving wheels, when he introduced his four-cylinder 4–6–0 (the Star class) in 1907. He built a lone 4–6–2, the Great Bear, in 1908: the wheel arrangement enabled it to have a wide firebox, but the type was not perpetuated because Welsh coal suited narrow grates and 4–6–0 locomotives were adequate for the traffic. After Churchward retired in 1921 his successor, C.B.Collett, was to enlarge the Star class into the Castle class and then the King class, both 4–6–0s, which lasted almost as long as steam locomotives survived in service. In Church ward's time, however, the Great Western Railway was the first in Britain to adopt six-coupled locomotives on a large scale for passenger trains in place of four-coupled locomotives. The 4–6–0 classes, however, were but the most celebrated of a whole range of standard locomotives of advanced design for all types of traffic and shared between them many standardized components, particularly boilers, cylinders and valve gear.
    [br]
    Further Reading
    H.C.B.Rogers, 1975, G.J.Churchward. A Locomotive Biography, London: George Allen \& Unwin (a full-length account of Churchward and his locomotives, and their influence on subsequent locomotive development).
    C.Hamilton Ellis, 1958, Twenty Locomotive Men, Shepperton: Ian Allan, Ch. 20 (a good brief account).
    Sir William Stanier, 1955, "George Jackson Churchward", Transactions of the Newcomen
    Society 30 (a unique insight into Churchward and his work, from the informed viewpoint of his former subordinate who had risen to become Chief Mechanical Engineer of the London, Midland \& Scottish Railway).
    PJGR

    Biographical history of technology > Churchward, George Jackson

См. также в других словарях:

  • Drug reaction testing — uses a genetic test to predict how a particular person will respond to various prescription and non prescription medications. It checks for genes that code for specific liver enzymes which activate, deactivate, or are influenced by various drugs …   Wikipedia

  • psychological testing — Use of tests to measure skill, knowledge, intelligence, capacities, or aptitudes and to make predictions about performance. Best known is the IQ test; other tests include achievement tests designed to evaluate a student s grade or performance… …   Universalium

  • Game testing — Part of a series on …   Wikipedia

  • Nuclear weapons testing — Nuclear weapons History Warfare Arms race Design Testing Effects Delivery Espionage …   Wikipedia

  • Portable appliance testing — For other uses, see PAT (disambiguation). A common label for certifying that a device has been tested. Portable appliance testing (commonly known as PAT or PAT Inspection or PAT Testing) is a process in the United Kingdom, New Zealand and… …   Wikipedia

  • Nuclear testing — Nuclear weapons tests are experiments carried out to determine the effectiveness, yield and explosive capability of nuclear weapons. Throughout the twentieth century, most nations that have developed nuclear weapons have tested them. Testing… …   Wikipedia

  • materials testing — Introduction       measurement of the characteristics and behaviour of such substances as metals, ceramics, or plastics under various conditions. The data thus obtained can be used in specifying the suitability of materials for various… …   Universalium

  • Usability testing — is a technique used to evaluate a product by testing it on users. This can be seen as an irreplaceable usability practice, since it gives direct input on how real users use the system [Nielsen, J. (1994). Usability Engineering, Academic Press Inc …   Wikipedia

  • Regression testing — is any type of software testing which seeks to uncover software regressions. Such regressions occur whenever software functionality that was previously working correctly stops working as intended. Typically regressions occur as an unintended… …   Wikipedia

  • Copy testing — Marketing Key concepts Product marketing · Pricing …   Wikipedia

  • Ultrasonic testing — Step 1 : The UT probe is placed on the root of the blades to be inspected with the help of a special borescope tool (video probe). Step 2 : Instrument settings are input. Step 3 : The probe is scanned over the blade root. In this case, an… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»